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Abstract. In this work we implement the spontaneous breaking of lepton number in version II of the 3-3-1
models and study their phenomenological consequences. The main result of this work is that our majoron
is invisible even though it belongs to a triplet representation by the 3-3-1 symmetry.

1 Introduction

There is already a vast literature concerning the class of
models with gauge structure, SU(3)C × SU(3)L × U(1)N ,
(3-3-1) [1–5]. In these models the anomaly cancellation re-
quires a minimum of three families (or a multiple of three in
larger versions). Besides, there is a bunch of new particles
and interactions which make these models phenomenolog-
ically rich and attractive as an alternative to the standard
model (SM). However if we assume that in the realm of
intermediate energy there are no exotic leptons, then the
3-3-1 symmetry allows for only two possible gauge mod-
els for the strong and electroweak interactions. We refer
to such models as version I and version II. The version I
is the one suggested by Pisano–Pleitez and Frampton [1].
In this version the standard leptons compose the follow-
ing triplet: (νL, lL, lcR)T. The version II is the 3-3-1 model
with right-handed neutrinos [2]. In it the standard leptons
constitute the following triplet: (νL, lL, νc

R)T.
One of the peculiar aspects of 3-3-1 models is that the

Peccei–Quinn (PQ) [6] and the lepton number symmetries
emerge naturally in both versions and their scalar sec-
tor provides a simple implementation of the spontaneous
breaking of such symmetries [7, 8].

Despite the fact that lepton symmetry is of great in-
terest for particle physics, since its violation is a necessary
condition to generate Majorana mass term for neutrinos, it
was scarcely developed in both versions of the 3-3-1 mod-
els [8]. For example, as regards lepton symmetry, an explicit
implementation of its spontaneous breaking is missing in
version II of the 3-3-1 models. On the other side, PQ sym-
metry has received great attention in both versions [9,10]

In view of this, in this work we implement the spon-
taneous breaking of lepton number symmetry and discuss
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some of their consequences in the version II of the 3-3-
1 models.

This work is organized as follows. In Sect. 2 we present
the particle content of the model. Next, in Sect. 3 we imple-
ment the spontaneous breaking of the lepton number and
identify the majoron. In Sect. 4 we concentrate on the phe-
nomenology of our majoron. In Sect. 5 we discuss neutrino
masses. Finally, in Sect. 6, we present our conclusions.

2 The model

Our investigation in this work relies on version II of the
3-3-1 models [2]. Its lepton content comes in the funda-
mental representation of the SU(3)L, composing the fol-
lowing triplet:

faL =


νa

ea

νc
a




L

∼ (1, 3, −1/3), eaR ∼ (1, 1, −1), (1)

with a = 1, 2, 3 representing the three known generations.
We indicate the transformation under 3-3-1 after the sim-
ilarity sign, “∼”.

In the quark sector, one generation comes in the triplet
fundamental representation of SU(3)L and the other two
compose an anti-triplet with the following content:

QiL =


 di

−ui

d′
i




L

∼ (3, 3̄, 0),

Q3L =


u3

d3

u′
3




L

∼ (3, 3, 1/3),

uiR ∼ (3, 1, 2/3), diR ∼ (3, 1, −1/3),
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d′
iR ∼ (3, 1, −1/3),

u3R ∼ (3, 1, 2/3), d3R ∼ (3, 1, −1/3),

u′
3R ∼ (3, 1, 2/3), (2)

where a = 1, 2, 3 and j = 1, 2, both representing the dif-
ferent generations. The primed quarks are the exotic ones
but with the usual electric charges.

In order to generate the correct mass for all massive
particles, the model requires only three triplets of scalars,
namely

η =


η0

η−

η′0


 , ρ =


ρ+

ρ0

ρ′+


 , χ =


χ0

χ−

χ′0


 , (3)

with η and χ both transforming as (1, 3, −1/3) and ρ
transforming as (1, 3, 2/3).

In the gauge sector, the model recovers the standard
gauge bosons and disposes of five more other ones, called
V ±, U0, U0† and Z2 [2].

Many of these new particles are bileptons (carrying two
units of lepton number) [10]

L(V +, U†0, u′
3, η′0, ρ′+) = −2,

L(V −, U0, d′
i, χ0, χ−) = +2. (4)

There are two things that deserve attention in this
lepton number distribution above. First, notice that the
new quarks, u′

3 and d′
i are leptoquarks once they carry

lepton and baryon numbers. Second, we have two neutral
scalars bileptons, η′0 and χ0. Therefore when one or both
of these neutral scalar bileptons develop a vacuum expec-
tation value (VEV), we are going to have spontaneous
breaking of the lepton number.

In what concerns the potential, it is suitable to note
that if we impose lepton number conservation and assume
the discrete symmetry χ → −χ, the potential we can form
with the three scalar triplets above,

V (η, ρ, χ) (5)

= µ2
χχ2 + µ2

ηη2 + µ2
ρρ

2 + λ1χ
4 + λ2η

4 + λ3ρ
4

+λ4(χ†χ)(η†η) + λ5(χ†χ)(ρ†ρ) + λ6(η†η)(ρ†ρ)

+λ7(χ†η)(η†χ) + λ8(χ†ρ)(ρ†χ) + λ9(η†ρ)(ρ†η),

has the striking feature of providing an extra global sym-
metry U(1) with the three triplets of scalars transforming
in the following way by this symmetry: η, ρ, χ ∼ (1). The
symmetry can be extended to the entire Lagrangian turn-
ing it into a symmetry of the model [7]. To accomplish
this the multiplets of matter must transform as Q1L ∼ (1),
QiL ∼ (−1), faL ∼ (−1/2) and eaR ∼ (−3/2) under the
new U(1), with all other multiplets not transforming at
all. The advantage of having this extra symmetry is that it
can be identified with the PQ symmetry [6], which might
potentially provide a solution to the strong CP problem

in the context of the 3-3-1 model1. This realization of PQ
symmetry in 3-3-1 was first observed by Pal in [7]. Pal
also recognized that such a scenario was not realistic once
the spontaneous breaking of this PQ symmetry implied a
Weinberg–Wilczek axion type [11], already ruled out phe-
nomenologically. What is interesting here is the fact that
the PQ symmetry is automatic in the minimal model.

Despite of the fact that the PQ symmetry in this min-
imal scenario is useless, it was shown in [10] that in order
to render the PQ symmetry useful we just have to add a
scalar singlet to the minimal content of the model. Then
with the price of introducing a scalar singlet we have a
solution to the strong CP problem.

In this paper we will not consider the extension made
in [10] that turned the PQ symmetry into a viable sym-
metry; instead we consider a term in the potential above
that breaks explicitly the PQ symmetry, but maintains the
lepton number symmetry. For this we have to discard the
discrete symmetry χ → −χ took above. In demanding lep-
ton number conservation, the only possible term that we
can add to the potential above is this:

f√
2

εijkηiρjχk, (6)

which explicitly breaks the PQ symmetry. This term is
expected to yield a mass for the axion around the scale of
vη which is of the order of a few hundreds of GeV.

In summary, version II of the 3-3-1 models presents two
global symmetries, namely the PQ and the lepton number
symmetry. Of these symmetries, only the former was al-
ready developed, as discussed above. The contribution of
this work to the development of this version of the 3-3-1
models is to complete the study of their global symmetries
by implementing the spontaneous breaking of the lepton
number symmetry.

The idea in the next section is to break spontaneously
the lepton number. As we will see next, we do not need to
add anything else to the model in order to implement the
breaking of the lepton number once the scalar content of
the model disposes of two neutral scalars bileptons, namely
η′0 and χ0. What we have to do is to allow one or both of
these scalar bileptons to develop a VEV. For the sake of
simplicity let us develop the case where only η′0 develops
a VEV.

3 Spontaneously broken lepton number

Before we go on, it is important to stress that the model we
are treating here was built in such way that lepton number
is a symmetry of the Lagrangian. The existence of this
global symmetry forbids neutrinos of having a Majorana

1 Notice that there is an interdependence between PQ sym-
metry and lepton symmetry in the sense that the discrete sym-
metry χ → −χ alone is not sufficient to avoid trilinear terms
like ηηρ and χχρ which violate the PQ symmetry. These tri-
linear terms are absent only when lepton number conservation
is imposed.
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mass term. As there is evidence that neutrinos are mas-
sive [12] and possibly Majorana-like [13], there is also a
strong motivation to push for lepton number violation. In
this section we implement the spontaneous breaking of the
lepton number. The case is interesting because a Goldstone
boson appears in the spectrum which is called a majoron.
As such a majoron comes from a multiplet, it can have ap-
pealing cosmological and astrophysical consequences [14].

We start expanding η′0, η0, ρ0 and χ0′ around its VEV,
vη′,η,ρ,χ′ , in the usual way,

η′0, η0, ρ0, χ′0 → 1√
2

(vη′,η,ρ,χ′ + Rη′,η,ρ,χ′ + iIη′,η,ρ,χ′).

(7)

On substituting this expansion in the potential formed
with (5) and (6), we obtain the following set of constraints:

µ2
χ + λ1v

2
χ′ +

λ4

2
(v2

η + v2
η′) +

λ5

2
v2

ρ

+
λ7

2
v2

η′ +
f

2
vηvρ

vχ′
= 0, (8)

µ2
η + λ2(v2

η′ + v2
η) +

λ4

2
v2

χ′ +
λ6

2
v2

ρ +
λ7

2
v2

χ′ = 0,

µ2
η + λ2(v2

η′ + v2
η) +

λ4

2
v2

χ′ +
λ6

2
v2

ρ +
f

2
vρvχ′

vη
= 0,

µ2
ρ + λ3v

2
ρ +

λ5

2
v2

χ′ +
λ6

2
(v2

η′ + v2
η) +

f

2
vηvχ′

vρ
= 0.

Notice that the second and third constraints imply the re-
lation

λ7v
2
χ′ − f

vρvχ′

vη
= 0, (9)

which avoids the presence of dangerous tadpoles with Rχ′ ,
stemming from the terms λ7(χ†η)(η†χ) and f√

2
εijkηiρjχk

in the potential.
With these constraints, the potential formed with (5)

and (6) leads to the following mass matrix M2
R for the

neutral CP -even scalars in the basis (Rχ, Rη′ , Rχ′ , Rη, Rρ):


− λ7v2
η′

4 0 λ7vηvη′
4

0 λ2v
2
η′

1
2 (λ4 + λ7)vχ′vη′

λ7vηvη′
4

1
2 (λ4 + λ7)vχ′vη′ λ1v

2
χ′

λ7vχ′ vη′
4 λ2vηvη′

λ4vχ′ vη

2 + λ7vχ′ vη

4

− λ7
4

vηvχ′ vη′
vρ

λ6
2 vη′vρ

λ5vχ′ vρ

2 + λ7
4

vχ′ v2
η

vρ

λ7vχ′ vη′
4 − λ7

4
vηvχ′ vη′

vρ

λ2vηvη′ λ6
2 vη′vρ

λ4vχ′ vη

2 + λ7vχ′ vη

4
λ5vχ′ vρ

2 + λ7
4

vχ′ v2
η

vρ

λ2v
2
η − λ7v2

χ′
4

λ6vηvρ

2 + λ7
4

v2
χ′ vη

vρ

λ6vηvρ

2 + λ7
4

v2
χ′ vη

vρ
λ3v

2
ρ − λ7

4
v2

χ′ v2
η

v2
ρ




.

(10)

Although the diagonalization of this matrix can be ex-
tremely tough, one can straightforwardly check that it
yields a null eigenvalue by writing the secular equation
for its determinant. This information is all that we need
to detect the number of Goldstone bosons among these
real scalars.

For the pseudo-scalars we have the following mass ma-
trix M2

I in the basis (Iη′ , Iχ, Iχ′ , Iη, Iρ):




0 0 0 0 0

0 − λ7v2
η′

4
λ7vηvη′

4
λ7vη′ vχ′

4
λ7
4

vχ′ vη′ vη

vρ

0 λ7vηvη′
4 − λ7v2

η

4 − λ7vχ′ vη

4 − λ7
4

vχ′ v2
η

vρ

0 λ7vχ′ vη′
4 − λ7vχ′ vη

4 − λ7v2
χ′

4 − λ7
4

v2
χ′ vη

vρ

0 λ7
4

vχ′ vη′ vη

vρ
− λ7

4
vχ′ v2

η

vρ
− λ7

4
v2

χ′ vη

vρ
− λ7v2

ηv2
χ′

4v2
ρ




. (11)

From this mass matrix we can easily see that the Iη′

remains massless and decouples from the other pseudo-
scalars, Iχ, Iχ′ , Iη, Iρ, which, after diagonalization, com-
bine among themselves to generate the Goldstone bosons.
These, along with the CP -even Goldstone boson obtained
from diagonalization of M2

R, form the set of Goldstone
bosons that will be eaten by the massive neutral gauge
bosons of the model. We then end up with an extra mass-
less pseudo-scalar, J = Iη′ , which is decoupled from the
other scalars. This massless pseudo-scalar is the result of
the spontaneous breaking of the lepton number. In the
literature this pseudo-scalar is the so called majoron.

It is opportune to remark that, although we have gotten
the right number of Goldstones and the majoron, we have
not explicitly shown that the true vacuum is the one that
we assumed here. As was pointed out some years ago [15],
it is necessary to analyze the possibility of having a broken
phase which does not correspond to a minimum of the
potential. In other words, we have to be sure that our
solution leads to a minimum and not a saddle point. In
our case, it would be enough to guarantee that the mass
matrices, (10) and (11), lead to positive eigenvalues, since
they would correspond to positive second derivatives of
the potential with respect to the fields at the minimum.
We have checked that for values of the λ’s of the order
of 0.1 (and λ7 < 0) and the VEV’s vη = vρ ≈ 100 GeV,
vη′ ≈ 1 MeV and vχ ≈ 1 TeV, we obtained that all the mass
eigenvalues are positive and above 1 TeV, except for the
majoron partner, which has a mass about 3 eV, consistent
with what we expect phenomenologically. Then we are
safely talking about a true vacuum which corresponds to
a minimum of the potential in this case.

Finally, it is important to remember that after the spon-
taneous breaking of the 3-3-1 symmetry the triplet η in (3)
dissociates into a doublet (η0 η−)T plus a singlet η′0 by
the standard SU(3)C ×SU(2)L×U(1)Y (3-2-1) symmetry.
As we saw, our majoron comes from η′0; thus it is a singlet
by the 3-2-1 symmetry. We know that a singlet majoron in
the SM is trivially invisible because it interacts at tree level
only with right-handed neutrinos. We will show in Sect. 4
that this is not the case here. Even though our majoron is
a singlet by the 3-2-1 symmetry, we cannot automatically
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jump to the conclusion that it is an invisible one because it
originates from a triplet by the 3-3-1 symmetry; therefore
it interacts with the neutral gauge boson Z1, which plays
the role of the standard neutral gauge bosons. In this case
what threatens the invisibility of our majoron is the decay
Z1 → Rη′ + Iη′ . Besides, it couples to the charged gauge
bosons of the model, W± and V ± [2], which leads to an
effective coupling to charged leptons and we have to care
about its size, which we do next.

4 Majoron phenomenology

As we saw, the majoron is a massless pseudo-scalar origi-
nating from the spontaneous breaking of the lepton number
global symmetry. This is possible in extensions of the SM
possessing at least an additionalmultiplet of scalars. In such
extensions, majorons that belong to either a triplet [17] or
a doublet [18] can interact with neutrinos and charged
leptons, being severely constrained by astrophysical, cos-
mological [14] and laboratory data [19]. The reason that
such phenomenological data disfavor the usual multiplet
majorons is related to the Z0 invisible decay rate [19]. The
problem comes from astrophysical bounds on the VEV that
breaks the lepton symmetry. Basically, these bounds de-
mand that triplet or doublet majoron scenarios develop a
VEV around keV in order to avoid too fast cooling of red
giants [14]. This constraint is derived through Compton
scattering to a majoron, γ + e → e + J . Then, the neutral
real scalar partner of the majoron, let us call it RJ , receives
a mass of the order of keV and therefore contributes to the
Z0 invisible decay Z0 → RJJ [19]. Nonetheless, such a
decay is not allowed for a light RJ since the measured in-
visible Z0 decay rate is well explained by three neutrinos
and this extra contribution is adding up to increase this
rate by an unacceptable amount. For this reason a success-
ful majoron model is expected to have its origin in a singlet
by the standard 3-2-1 symmetry. A singlet majoron model
was first suggested by Chikashige, Mohapatra and Peccei
(CMP) in [16]. In view of this, a criterion to decide if a
majoron emerging from extensions of the SM can be estab-
lished by demanding that the scalar that gives rise to the
majoron be a singlet by the 3-2-1 symmetry. Unfortunately
this criterion cannot be used for our majoron.

Despite that our majoron is a singlet by the 3-2-1 sym-
metry, it presents some differences from the CMP majoron.
Namely, our majoron interacts with all the gauge bosons of
the model, particularly the Z1, which is the equivalent of
the standard neutral gauge boson Z0. Moreover, on evalu-
ating numerically the matrix M2

R in (10) for typical values
for the parameters involved in it, we will find that the mass
of RJ is proportional to vη′ . In face of this, it is recom-
mended that we check if for small vη′ the decay Z1 → RJJ
does not rule out our scenario.

After the symmetrybreaking from3-3-1 to theSU(3)C×
U(1)em, the Z0 get mixed with the Z ′ and form the phys-
ical neutral gauge bosons Z1 = Z0Cθ − Z ′Sθ and Z2 =
Z0Sθ +Z ′Cθ [20]. Our interest here lies upon Z1 because it
will play the role of the standard neutral gauge boson [20].
With this mixing we obtain, from the Higgs boson kinetic

term (Dµη)†(Dµη), the following interaction among the
majoron and the neutral gauge boson Z1:

LZ1RJJ = − 1
3

g
√

3 + t2Sθ (∂µRJJ − ∂µJRJ) Z1
µ, (12)

where g is the coupling constant for the weak-isospin group
SU(3)L which coincides with the standard one [2], t =√

3SW√
3−4S2

W

and SW = sin θW with θW being the Weinberg

angle. This interaction leads to the following expression for
the decay rate Z1 → RJ J :

ΓZ1→RJJ =
4
9

g2(3 + t2)S2
θmZ1 =

2
3

S2
θC2

W(3 + t2)Γνν ,(13)

where Γνν =
GFm3

Z1

12
√

2π
is the prediction for the decay rate of

Z1 into a pair of neutrinos. For S2
W = 0.23, which yields

t = 0.57, we obtain

ΓZ1→RJJ = 1.66S2
θΓνν . (14)

From the experimental side, we have [21]

Γ ex
inv = (2.993 ± 0.011)Γνν . (15)

Assuming that there are only three species of neutrinos,
the window for new physics concerning the invisible decay
of Z1 is

ΓNP
inv ≤ 0.004Γνν . (16)

From (16) and (14) we obtain the constraint

Sθ ≤ 0.049. (17)

There is an upper bound on this angle: θ ≤ 0.000132 [20].
As long as this upper bound is obeyed we can safely say
that the decay Z1 → RJJ does not rule out our majoron.

Another source of phenomenological constraints against
the existence of the majoron arises from its coupling to
matter, particularly to the electron. The interaction among
any lepton and the majoron only appears through loop
corrections. In regard to the electron, the main contribution
to such an interaction is depicted in Fig. 1, which originates
from the Lagrangian

L =
g√
2

(
ν̄Lγµe−

L W+
µ + ν̄C

L γµe−
L V +

µ

)

W− V −

J

×
e− e−νe νc

e

Fig. 1. Main contribution to geeJ coupling
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+
g2

2
vηW+V −J + H.c. (18)

With these interactions we obtain the following approx-
imate expression for the electron–electron–majoron cou-
pling:

geeJ � g4m2
νe

mevη

16π2m2
W m2

V

. (19)

The experimental constraint is geeJ < 10−18 [22], which
is obviously satisfied by typical values of the parameters
involved in (19).

Once we are sure that our majoron is safe from phe-
nomenological constraints, we can go a step further and
present what is the main signal of our majoron. In accor-
dance with the Yukawa interactions of this model [2], the
triplet η only interacts with quarks. This means that our
majoron does not interact directly with any lepton. Par-
ticularly our majoron interactions with fermions involve
only the leptoquark and the ordinary quark [2]. In view of
this we would expect that its main signal is the decay of a
leptoquark in an ordinary quark plus majoron, q′ → q+J .
The decay rate in this case is

Γ (q′ → q + J) =
h2mq

16π
. (20)

In this rate mq stands for the mass of an ordinary quark,
with h representing the Yukawa strength interactions
among leptoquark–quark–majoron. This means that the
discovery of this majoron depends on the existence of the
exotic quarks u′ and d′, which are characteristic of the
3-3-1 models.

Let us establish a classification for our majoron. We saw
that as consequences of the spontaneous breaking of the
lepton number a majoron showed up in the model. In the
literature majorons are classified as singlet or multiplet
majorons. This classification is based on majorons that
come from extensions of the standard model. In view of
this, the common majorons are singlet [16], doublet [17] or
triplet [18] majorons. Phenomenological constraints have
ruled out the doublet and the triplet majorons [19], allowing
for the singlet majoron only. We have a peculiar situation
here. Our majoron is a triplet by the 3-3-1 symmetry, but it
is a singlet by the 3-2-1 symmetry.However, it interactswith
fermions and gauge bosons, which is typical of multiplet
majorons (double or triplet). It is due to this, and to the
fact that our majoron has its origin in a triplet by the
3-3-1 symmetry, that we decided to classify our majoron
as a multiplet majoron, particularly a triplet majoron.

We finish this section pointing out that our majoron
presents the peculiar feature of interacting with quarks
instead of interacting with leptons, exactly the contrary
to the other multiplet majorons. It is this fact that turns
our majoron phenomenologically distinct from the other
multiplet majorons.

5 Upper bound on vη′ and neutrino masses

As the majoron has its origin in a triplet, its associated
vacuum vη′ should contribute to theρparameter. In order to

check this, let us obtain the expression for ρ. The definition

of ρ here goes like in the SM: ρ =
m2

W+

m2
Z1

C2
W

. The respective

expressions for m2
W+ and m2

Z1
in leading order in 1

vχ′ are

m2
W+ =

g2

4

(
v2

ρ + v2
η − v2

ηv2
η′

v2
χ′

)
,

m2
Z1

=
g2(v2

ρ + v2
η)

4C2
W

(21)

×
(

1 − 3 + 4t2

108

(
5(v2

ρ + v2
η)

12v2
χ′

+
9 + 56

√
2√

2

v2
η′

v2
χ′

))
.

Observe that if we take vη′ = 0, we recover the masses
predicted by the original version of the model [2].

With these masses we obtain the following expression
for ρ:

ρ =
v2

ρ + v2
η − v2

ηv2
η′

v2
χ

(v2
ρ + v2

η)
(

1 − 3+4t2

108

(
5(v2

ρ+v2
η)

12v2
χ

+ 9+56
√

2√
2

v2
η′

v2
χ

)) .

(22)

The present value for ρ is ρ = 1.0012+0.0023
−0.0014. Taking appro-

priate values for the parameters in (22) (vρ = vη = 102 GeV
and vχ = 103 GeV), we obtain the following upper bound
upon vη′ :

vη′ ≤ 40 GeV. (23)

The parameter ρ is very sensitive to the value of vχ. For
example, for vχ = 500 GeV we get vη′ ≤ 16 GeV.

Let us now show that the breaking of the lepton number
through vη′ �= 0 engenders Majorana mass for the neutri-
nos. One can see this by noticing that when η′0 develops a
VEV, the Yukawa interaction habf̄aLebRρ [2], together with
the term λ9(η†ρ)(ρ†η) in the potential, generate Majorana
neutrino mass through one loop as depicted in Fig. 2. In
a naive approximation such a loop provides the following
Majorana mass terms for the neutrinos:

mν
ij ≈ λ9hiamahajvηvη′

m2
ρ′+

, (24)

ρ+ ρ′+

〈vη〉 〈vη′〉

νa νae−a
Fig. 2. One loop diagram that leads to Majorana neutrino mass
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with i, j = 1, 2, 3 and a = e, µ, τ .
On the other side the Yukawa interaction habf̄aLebRρ

generates the following charged lepton mass matrix: ml
ab =

habvρ. In principle the model has the stage settled to com-
pute masses for all leptons if we can extract information
about the matrix elements hab. This subject deserves care-
ful analysis since only appropriate patterns of mixing could
reproduce the recent data on neutrino physics. Although
we will study this in detail elsewhere [23], here we can at
least check if the matrix elements in (24) can be obtained
within a reasonable order of magnitude considering neu-
trinos acquire masses around eV’s. To accomplish this we
make some assumptions concerning the values of the pa-
rameters involved in lepton masses. Namely, vρ ≈ 102 GeV
(responsible for charged lepton masses), vη ≈ 102 GeV (the
electro-weak scale), vη′ ≈ 1 MeV (it could be even of the
order of keV’s since lepton number is only very softly bro-
ken), mρ+′ ≈ 103 GeV (since it is a typical scalar related to
3-3-1 symmetry) and λ9 ≈ 1. If we take the largest matrix
element hij , that related to the tau mass, we see that it
has to be of the order of 10−2; this amounts to

mν
ij ≈ 10−2 eV, (25)

which is an impressive value for the order of magnitude for
a neutrino mass. It will be a great achievement for this 3-3-1
model if besides providing an invisible majoron the correct
pattern of neutrino mixing and masses emerge naturally
from the model.

6 Conclusions

The contribution of this work to the development of version
II of the 3-3-1 models is the implementation of the sponta-
neous breaking of the lepton number. The importance of
this is the fact that lepton number violation is a necessary
condition to generate Majorana neutrino mass. In view of
this the main result of this paper is that spontaneously
broken lepton number is viable once the majoron is invis-
ible. It is important to remember that we achieved this
without any modification of the minimal model; basically
we just allowed η′0 to develop a VEV.

To finalize, in general the 3-3-1 models present two extra
global symmetries, namely, the PQ and the lepton number
symmetries. Moreover their scalar sector provides a simple
implementation of the spontaneous breaking of such sym-
metries [7, 8]. Regarding the PQ symmetry, it was shown
in [7] that in both versions the spontaneous breaking of the
PQ symmetry imply a Weinberg–Wilczek axion type [11]
already ruled out phenomenologically, turning then such
symmetry useless. Recently it was shown in [10] that in
version II the PQ symmetry regains its usefulness by the
addition of a simple scalar singlet. In regard to the lepton
number symmetry, it was shown in [8] that the majoron
that comes from the spontaneous breaking of the lepton
number in version I is identical to the Gelmini–Roncadeli
one [18], which is already ruled out phenomenologically.
In this work we completed this sequence of investigations
by showing that in version II the spontaneous breaking of

the lepton number implied an invisible majoron. Such a
result puts version II in a privileged position. Moreover,
as we saw in Sect. 5, it seems that the model has all the
ingredients to provide the correct neutrino masses. In this
sense, it would be possible to have two strong candidates
for cold dark matter and simultaneously solve the neutrino
puzzle along with the strong-CP problem [23].
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